
Genetic algorithms for continuous optimization problems - a concept of parameter-space size

adjustment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 7849

(http://iopscience.iop.org/0305-4470/30/22/022)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen.30 (1997) 7849–7861. Printed in the UK PII: S0305-4470(97)84657-4

Genetic algorithms for continuous optimization
problems—a concept of parameter-space size adjustment

Aleksandra B Djurǐsić†, Jovan M Elazar† and A D Rakíc‡
Faculty of Electrical Engineering, University of Belgrade, PO Box 35–54, Belgrade, Yugoslavia
‡ University of Queensland, Department of Electrical and Computer Engineering, St Lucia QLD
4072, Brisbane, Australia

Received 27 May 1997, in final form 2 September 1997

Abstract. The concept of parameter-space size adjustment is proposed in order to enable
successful application of genetic algorithms to continuous optimization problems. Performance
of genetic algorithms with six different combinations of selection and reproduction mechanisms,
with and without parameter-space size adjustment, were severely tested on eleven multiminima
test functions. An algorithm with the best performance was employed for the determination of
the model parameters of the optical constants of Pt, Ni and Cr.

1. Introduction

Optimization algorithms based on the analogy natural phenomena, such as simulated
annealing [1] and genetic algorithms [2], find many applications in various fields. These
algorithms have in common a high probability of locating the global optimum regardless of
initial estimates, but the prices paid are large memory and CPU time requirements.

Genetic algorithms (GAs) have been recently proposed for solving complex optimization
problems. Their application, due to the nature of the algorithm, is mostly restricted to
optimization problems whose solution could be easily represented in binary form. In the
search for optimal solutions GAs use the mechanisms of natural survival: selection, mating
and mutation. These mechanisms are applied to the set of vectors called ‘strings’, that
represents a population. Strings, referred to as chromosomes in the context of GAs, are
possible solutions of the problem, which are, in our case, vectors of model parameter values.
They are characterized by their ‘fitness’—performance with respect to some objective
function. Strings with high fitness may enter the mating population, i.e. they may survive
or give offspring in the next generation, while the strings with low fitness are killed off.
The new population is formed by applying the crossover and mutation mechanisms to the
chromosomes in the mating population. After a specified number of generations an optimal
solution should be obtained.

Traditional GAs which employ binary-string representation of the solution space are
not convenient for solving continuous optimization problems. By using the floating-point
number coding, as suggested in [3, 4], with appropriate mechanisms of crossover and
mutation, the length of the chromosome is given by the number of model parameters.
Conversion of decimal equivalents into binary numbers, and vice versa, is avoided and hence
the computational time is reduced. Moreover, the parameter values will not be altered or
destroyed during the crossover operation, so that uncontrolled mutations introduced during
the crossover in the case of binary coded strings are avoided.

0305-4470/97/227849+13$19.50c© 1997 IOP Publishing Ltd 7849

7850 A B Djurišić et al

The model-parameter estimation problem, which frequently arises in many areas,
consists of determination of parameter values of the theoretical model on the basis of
known experimental results. An algorithm capable of locating the global optimum without
providing initial estimates should be employed for solving this problem [5–7]. However,
even with floating-point number coding, GAs are not suitable for determination of model
parameters due to their continuous nature. The main reason for this is the discrete sampling
of the solution space. GAs are capable of locating roughly the global optimum, but a
huge number of chromosomes in the population is necessary for any refinements. A
method for solving that problem is proposed here. The concept of genetic algorithms
with parameter-space size adjustment (GAPSSAs) is based on the idea of concentrating the
search in the area where optimum is expected, by adaptively narrowing the boundaries for
each parameter around the average value obtained for that parameter in the previous outer
loop iteration. In such a manner more reliable and more precise location of the global
optimum is made possible for considerably fewer chromosomes in the population. Due
to the achieved improvements in precision of locating the global minimum, continuous
optimization problems can be successfully solved using GAPSSAs, as shown here for the
problem of model parameter determination of the optical constants of three metals.

The paper is organized as follows. In section 2 we describe the GAs and GAPSSAs
proposed in this paper. Section 3 is devoted to the comparison of performance of these
algorithms applied on eleven multiminima test functions. In section 4 a model for the
optical constants of metals is described and an algorithm with the best performance is used
to estimate its parameters for platinum, nickel and chromium.

2. Description of the algorithm

In order to implement a genetic algorithm we need to define the procedure of how to
generate the population, and how to perform the operations of selection, mating, crossover
and mutation.

2.1. Representation of chromosomes and population generation

A chromosome is represented by a string of finite length. To each element in the string, i.e.
a gene, a value of the corresponding model parameter is assigned according to a floating-
point number coding scheme [3, 4]. Therefore, operations of selection, reproduction and
mutation suitable for real numbers are employed. Parameter valuesp(k) in strings of the
initial population are generated inside the initially set boundariespl(k) andpu(k), according
to the formula

p(k) = pl(k)+ (pu(k)− pl(k))r (1)

wherer is a random numberr ∈ [0, 1].

2.2. Selection and mating

We investigated two different types of selection and mating. In the first case, we used
the selection scheme of binary tournament [8]. The tournament population consists of two
copies of every string in the current population. Strings of the tournament population are
randomly grouped in pairs and the one with better fitness survives in the mating population,
while the other is eliminated. If two strings in the tournament have the same fitness value,
the surviving one is randomly chosen. Both copies of the best performing string survive

Algorithms for continuous optimization problems 7851

in the mating population, while the worst is completely eliminated. The crossing over
between two randomly chosen strings in the mating population is performed with the given
crossover probabilityPcross. If crossover does not take place, strings survive in the next
generation. After performing the mutation, all strings are duplicated to form the new
tournament population.

In the second case [9],Ps per cent of the new generation is produced by selection, and
Pc per cent is produced by crossover.Ns = N ∗Ps strings with the best fitness, whereN is
the number of strings in the population, enter directly the population of the next generation.
The remaining number of strings in the new population is generated by crossover among the
parent strings which are randomly chosen between all the strings in the current population.
The probability of a string having offspring in the next generation depends on its normalized
fitness

F(i) = f (i)∑N
i=1 f (i)

(2)

wheref (i) is the fitness value of theith string. The strings with higher fitness have higher
probability of being the parent strings. We obtained the best results with valuesPs = 0.2
andPc = 0.8.

2.3. Crossover

Operation of crossover exchanges subsets of elements between two chromosomes. If the
subset consists of adjacent elements, it is an ‘ordered combination’ crossover, while in
‘uniform combination’ crossovers each element is randomly chosen, as stated in [10]. We
investigated two types of crossover: two-point crossover, as a representative of the ‘ordered
combination’ crossover, and crossover of randomly chosen genes, i.e. ‘uniform combination’
crossover. In the first case two points are randomly chosen, and elements of strings between
the two points are swapped [3]. Figure 1(a) shows the two-point crossover, which is more
efficient than the one-point crossover [3]. In the second case, as depicted in figure 1(b),
we determine the number of elements to be swapped by generating a random integer
N1 ∈ [nmin, npar], where npar is a number of model parameters, i.e. number of elements
in strings, andnmin is the minimal number of elements exchanged in the crossover. Then
we generate random integersni ∈ [1, npar], i = 1, N1 and swap elements at positionsni .

2.4. Mutation

When a new generation is formed by means of selection and mating, we perform random
mutations of parameter values in strings, referred to as genes, with probability of mutation
Pmute for each gene. If the random number generated between 0 and 1 is less than the
value of the mutation probability, the gene in the chromosome will be mutated. Mutation
is necessary for maintaining a certain diversity in the population, i.e. to prevent the quick
convergence to a local minimum. If the value ofPmute is to large, mutation no longer
has the function of improving the performance of the population, because it causes the
loss of some important genetic information, causing poor convergence. In the case of
binary representation of the chromosomes, mutation is performed by simply inverting the
value of the gene, while in the case of floating-point representation there must be adopted
a method of mutation suitable for dealing with real numbers. In this paper, mutation is
performed by generating the new value of the parameter in the same way as in the process
of population generation. In our calculations, the best results were obtained with the value
of thePmute= 0.01.

7852 A B Djurišić et al

Figure 1. (a) Scheme of the two-point crossover, (b) scheme of the crossover of randomly
chosen genes.

2.5. Realization of the adaptive parameter-space size

The main problem in using genetic algorithms for continuous optimization problems is the
necessity of employing a very large number of strings in the population, which demands
extensive computer resources. Because of the discrete sampling of the solution space, even
rerunning the algorithm a number of times does not guarantee that the global optimum is
located precisely, if it is found at all. The phenomenon that real-coded GAs can be blocked
from further progress in certain situations has already been recognized and discussed [11].
Improving the performance of the real-coded GAs by introducing more appropriate crossover
mechanism was proposed [12–14]. All suggested crossover operators (intermediate or line
crossover) have one feature in common—they introduce new parameter values in between
two parent ones. However, these new values are in a certain way bound to existing ones,
so that the presented problem is not always solved successfully in this manner. Therefore,
we introduce a concept of the adaptive parameter-space size, based on the idea that more
accurate parameter values could be obtained by refining our guess about the dimensions
of the solution space. The pseudocode of the GAPSSA algorithm is shown in figure 2.
Within the initially set boundaries we generate a population and employ one of the classical
GAs. Then we reduce the parameter-space size according to the average value of each
parameter in the final population at the end of the inner loop. The new initial population at
the beginning of the next inner loop is generated within the new boundaries and the genetic
algorithm is performed again. The new boundaries are determined according to

pu(k) = pu(k)− c(pu(k)− µ̂(k)) (3)

pl(k) = pl(k)+ c(µ̂(k)− pl(k)) (4)

whereµ̂(k) is the average value of the parameterp(k) in the inner loop final population,
andc is a predetermined positive number less than 1. At the beginning of the outer loop, we
generate a new population that includes the string with the best-fitness in the inner-loop final
population. The inner loop terminates if the best-fitness value remains unchanged in three
consecutive iterations, or if the initially set of maximal number of generations is reached.
The outer loop is performednmax times, wherenmax is initially set at maximal number of
iterations.

Algorithms for continuous optimization problems 7853

Figure 2. Pseudocode of the GAPSSA algorithm.

3. Test of the GAs and GAPSSAs

To investigate the performance of the GAs and GAPSSAs we performed experiments
on four families of test functions for different number of variables, i.e. algorithms were
tested on eleven multiminima test functions. We also investigated the influence of the
choice of selection and reproduction mechanisms to the quality of the final solution.
Therefore, performance of the following algorithms was tested: GA1a, GAPSSA1a, GA1b,
GAPSSA1b, GA1c, GAPSSA1c, GA2a, GAPSSA2a, GA2b, GAPSSA2b, GA2c and
GAPSSA2c, where the numbers 1 and 2 denote the employed method of selection and
letters a, b and c denote the employed method of crossover:

(1) tournament selection;
(2) selection of theNs best performing strings;
(a) two-point crossover;
(b) crossover of random elements with minimal number of elements participating in the

crossover equal 1;
(c) crossover of random elements with minimal number of elements participating in the

crossover equalnpar/2.
The first investigated family of functions is given by

f (x) =
n∑
i=1

ax2
i + bx2

i sincxi. (5)

Section off (x) along an axis for values ofa = 0.2, b = 0.1 and c = 2 is shown in
figure 3. The obtained final objective-function values for 20, 50 and 100 variables where
xi ∈ [−10, 10], i = 1, n, each forN = 2000,N = 1000 andN = 500 strings in the
population, are presented in table 1.

The second family of multiminima functions was investigated by Aluffi-Pentiniet al

7854 A B Djurišić et al

Figure 3. Section off along one axis fora = 0.2, b = 0.1 andc = 2.

Table 1. Final values of objective functionf for npar variables andN chromosomes.

Algorithm GA1a GAPSSA1a GA1b GAPSSA1b GA1c GAPSSA1c

npar= 20, N = 2000 3.961E-4 2.223E-7 4.190E-3 8.762E-7 1.987E-4 8.773E-7
npar= 20, N = 1000 0.639 3.356E-6 5.532 3.722E-5 0.463 1.616E-6
npar= 20, N = 500 36.80 9.280E-3 80.42 1.779E-2 22.97 1.007E-2
npar= 50, N = 2000 0.402 8.244E-6 1.912 3.646E-5 0.188 1.586E-7
npar= 50, N = 1000 8.292 7.610E-3 24.333 1.169E-2 7.548 9.520E-3
npar= 50, N = 500 3.610E-3 3.210E-6 3.156E-2 1.927E-5 3.550E-2 1.116E-5
npar= 100, N = 2000 1.457E-2 1.787E-5 0.171 4.990E-6 3.617E-1 2.527E-5
npar= 100, N = 1000 10.98 8.990E-3 26.89 2.170E-2 8.139 9.680E-3
npar= 100, N = 500 4.812 1.902E-4 9.997 4.414E-4 2.769 3.142E-4

Algorithm GA2a GAPSSA2a GA2b GAPSSA2b GA2c GAPSSA2c

npar= 20, N = 2000 6.765E-2 1.906E-4 3.280E-2 5.267E-5 4.023E-2 6.901E-5
npar= 20, N = 1000 4.020 3.110E-3 0.933 9.592E-4 0.612 4.713E-4
npar= 20, N = 500 34.671 2.712E-2 3.039 6.420E-3 1.941 4.419E-3
npar= 50, N = 2000 3.429 7.790E-3 0.660 2.450E-3 0.557 2.040E-3
npar= 50, N = 1000 20.874 7.283E-2 3.908 1.120E-2 2.408 4.020E-3
npar= 50, N = 500 0.812 1.152E-4 0.334 1.087E-4 0.286 1.001E-4
npar= 100, N = 2000 5.967 6.080E-3 6.075 2.350E-3 6.147 3.130E-3
npar= 100, N = 1000 41.67 0.103 8.652 2.983E-2 6.097 2.220E-2
npar= 100, N = 500 49.42 4.384E-2 27.41 1.782E-2 25.90 1.482E-2

[15] and Dekkers and Aarts [16]. It is given by

g(x) = π

n

[
k1 sin2πy1+

n−1∑
i=1

(yi − k2)
2(1+ k1 sin2πyi+1)+ (yn − k2)

2

]
(6)

whereyi = 1+ 0.25(xi + 1), k1 = 10, k2 = 1, andxi ∈ [−10, 10], i = 1, n. Figure 4
shows this function for two variables. Functiong has roughly 5n local minima. In cited
references, this function was tested for three variables, and the results obtained for 2000

Algorithms for continuous optimization problems 7855

Figure 4. Functiong for two variables.

Table 2. Final values of objective functiong for npar variables and 2000 chromosomes.

Algorithm GA1a GAPSSA1a GA1b GAPSSA1b GA1c GAPSSA1c

npar= 20 1.707E-5 1.503E-7 3.701E-4 1.851E-8 1.163E-5 1.329E-8
npar= 50 3.376E-2 6.165E-4 0.366 3.304E-7 6.470E-3 9.915E-7
npar= 100 0.272 1.780E-4 0.787 1.916E-4 0.056 1.230E-4

Algorithm GA2a GAPSSA2a GA2b GAPSSA2b GA2c GAPSSA2c

npar= 20 3.620E-2 4.360E-6 1.101E-3 1.660E-6 1.920E-3 7.010E-7
npar= 50 1.826 2.470E-4 0.155 3.192E-5 0.136 3.347E-5
npar= 100 1.314 9.584E-4 0.220 1.370E-4 9.310E-2 1.390E-4

strings in the population are presented in table 2.
The third family of multiminima functions, also investigated by Aluffi-Pentiniet al [15]

and Dekkers and Aarts [16] is shown in figure 5. This family of test functions is given by

h(x) = k3

{
sin2(πk4x1)+

n−1∑
i=1

(xi − k5)
2[1+ k6 sin2(πk4xi+1)]

+(xn − k5)
2[1+ k6 sin2(πk7xn)]

}
(7)

wherek3 = 0.1, k4 = 3, k5 = 1, k6 = 1 andk7 = 2. In cited references, this function was
tested for five variablesxi ∈ [−5, 5], i = 1, 5, i.e. in the area where the function has roughly
155 minima. We performed tests with 20, 50 and 100 variables forxi ∈ [−10, 10], i = 1, n.
The results obtained, also forN = 2000 strings in the population, are presented in table 3.

It should be noted that in this paper we investigated the performance of the algorithms on
multiminima test functions for large number of variables (up to 100), while in literature up
to date the largest number of variables in test functions was 10. All the above investigated
functions have global minima equal zero. In all cases the GAPSSAs obtained a significantly

7856 A B Djurišić et al

Figure 5. Functionh for two variables.

Table 3. Final values of objective functionh for npar variables and 2000 chromosomes.

Algorithm GA1a GAPSSA1a GA1b GAPSSA1b GA1c GAPSSA1c

npar= 20 2.037E-4 1.335E-7 1.658E-2 4.134E-7 4.940E-4 1.662E-8
npar= 50 0.258 4.892E-6 1.749 1.262E-4 0.227 6.038E-6
npar= 100 9.891 6.320E-3 22.12 1.109E-2 7.175 6.780E-3

Algorithm GA2a GAPSSA2a GA2b GAPSSA2b GA2c GAPSSA2c

npar= 20 0.149 6.433E-6 1.745E-2 4.532E-5 5.328E-2 1.493E-5
npar= 50 3.015 1.810E-3 0.628 3.697E-4 0.684 4.020E-3
npar= 100 25.99 7.277E-2 8.377 1.020E-2 5.273 7.841E-3

lower objective-function value (for several orders of magnitude). It can be observed that
GAs give nearly satisfactory results (about 10−2–10−4 while GAPSSA give 10−5–10−7) only
when the number of chromosomes in the population is large (N = 2000) and for a small
number of variables (npar= 20). By reducing the number of chromosomes the performance
of the GAs deteriorates significantly. For a larger number of variables (npar = 50, 100)
GAs find values far from optimal, while GAPSSAs still obtain near optimal values, though
higher than values obtained for (npar= 20). It can also be observed that GAPSSAs which
incorporate the method of selection by tournament and the method of ‘uniform combination’
crossover with minimal number of exchanged elements that equalsnpar/2 obtained slightly
better results than other GAPSSAs.

We also tested our algorithms on the Rosenbrock valleys, given by

r(x) =
n∑
i=1

100(xi+1− x2
i)

2+ (1− xi)2. (8)

Algorithms for continuous optimization problems 7857

Table 4. Final values of objective functionR for npar variables and 2000 chromosomes.

Algorithm GA1a GAPSSA1a GA1b GAPSSA1b GA1c GAPSSA1c

npar= 4 3.453 2.405E-2 133.27 2.551E-2 7.087 1.671E-3
npar= 10 4.799 2.863 27.24 4.202E-2 0.290 8.901E-2

Algorithm GA2a GAPSSA2a GA2b GAPSSA2b GA2c GAPSSA2c

npar= 4 3.357E+5 9.540E-2 1.366E+4 1.214E-2 7.849E+3 2.933E-2
npar= 10 12.67 5.164 7.354 6.011 8.09 5.680

This family of functions, shown in figure 4 for two variables, was investigated by Corana
et al [17] for two and four variables, and represents a very difficult test for an optimization
algorithm. We used four variablesxi ∈ [−200, 200], i = 1, 4, as did Corana, and 10
variablesxi ∈ [−10, 10], i = 1, 10. The results obtained are shown in table 4. Again,
GAPSSAs locate the global optimum while GAs fail to do so. For 10 variables only
algorithms of GAPSSA1 family with ‘uniform combination’ crossover obtain optimal values,
once again proving the superiority of these algorithms in escaping local minima.

4. Application to platinum, nickel and chromium

We shall briefly discuss the applied model for the optical dielectric function, which was
often employed for modelling the optical constants of metals [5, 18]. It was shown [19–22]
that the dielectric constantεr(ω) can be expressed in the following form:

ε̂r (ω) = ε̂r (f)(ω)+ ε̂r (b)(ω) (9)

which separates explicitly the intraband effects (usually referred to as free-electron effects)
from interband effects (usually referred to as bound-electron effects).

The intraband part̂εr
(f)
(ω) of the dielectric constant is described by the well known

free-electron or Drude model [23]

ε̂r
(f)
(ω) = 1− �2

p

ω(ω + i00)
(10)

and the interband part of the dielectric constantε̂r
(b)
(ω) is described by the simple

semiquantum model resembling the Lorentz result for insulators [18]

ε̂r
(b)
(ω) = −

k∑
j=1

fjω
2
p

(ω2− ω2
j)+ iω0j

(11)

whereωp is the plasma frequency,k is the number of interband transitions with frequency
ωj , oscillator strengthfj and lifetime 1/0j , while �p =

√
f0ωp is the plasma frequency

associated with intraband transitions with oscillator strengthf0 and damping constant00.
The following objective function for determining the fitness of strings was used:

E(p) =
i=N∑
i=1

[∣∣∣∣εr1(ωi)− εexp
r1 (ωi)

ε
exp
r1 (ωi)

∣∣∣∣+ ∣∣∣∣εr2(ωi)− εexp
r2 (ωi)

ε
exp
r2 (ωi)

∣∣∣∣]2

(12)

whereεr1(ωi), εr2(ωi) are calculated values of the real and imaginary parts of the dielectric
constant at frequencyωi , while εexp

r1 (ωi), ε
exp
r2 (ωi) are the corresponding experimental values.

In this section we applied the GAPSSA1c algorithm to determine the model-parameter

7858 A B Djurišić et al

Figure 6. Functionr for two variables.

values of the optical constants of the following metals: Pt, Ni and Cr. Values of the plasma
frequencies of these metals were determined according to the definition

ωp =
(
Ne2

mε0

)1/2

(13)

whereN is the concentration of the valence electrons. For all metals we used four oscillators.
To fit the semiquantum model to the data for platinum we used the experimental results

given in [25], based on the work of Weaveret al [26]. Weaver [27–29] used reflectance
and transmittance [30] data to obtainn and k by the Kramers–Kr̈onig technique. The
obtained oscillator-strength values correspond to the plasma frequency ¯hωp = 9.59 eV.
Figure 7 showsεr1, εr2 versus energy for platinum (full curve—semiquantum model, open
circles—experimental data). For nickel we used the experimental results given in [25]. The
obtained oscillator-strength values correspond to the plasma frequency ¯hωp = 15.92 eV.
Figure 8 showsεr1, εr2 versus energy for nickel (full curve—semiquantum model, open
circles—experimental data). To fit the optical constants of chromium we used experimental
results given in [31, 32]. The oscillator strength values correspond to the plasma frequency
h̄ωp = 10.75 eV. Figure 9 showsεr1, εr2 versus energy for chromium (full curve—
semiquantum model, open circles—experimental data). In all cases a good agreement
between calculated and experimental values is obtained.

5. Conclusion

The problem of implementation of genetic algorithms to continuous optimization problems is
discussed. In doing so, our prime concern was the possibility of applying these algorithms
to the very specific and delicate problem: determination of the model-parameter values
by minimizing the difference between experimental and calculated data. In this case, only
precise and reliable location of global minima can provide the correct solution, since slightly
different objective-function values can be obtained for significantly different parameter
values. A concept of parameter-space size adjustment was proposed as a method of solving

Algorithms for continuous optimization problems 7859

Figure 7. Real and imaginary part of the dielectric constant of Pt versus energy (full curve—
model, open circles—tabulated data).

Figure 8. Real and imaginary part of the dielectric constant of Ni versus energy (full curve—
model, open circles—experimental data).

the problems originating in discrete sampling of the solution space. We performed tests
on four families of multiminima test functions for different numbers of variables (up to

7860 A B Djurišić et al

Figure 9. Real and imaginary part of the dielectric constant of Cr versus energy (full curve—
model, open circles—experimental data).

100) and for different numbers of chromosomes of the population. It was proved that the
performance of GAPSSAs are substantially improved compared with the performance of
GAs. In other words, in all cases GAPSSAs obtain lower objective-function values. Also,
it can be concluded that a combination of tournament selection and ‘uniform combination’
crossover gives the best results. In applying the algorithm with the best performance,
GAPSSA1c, to parameter estimations of the semiquantum model of optical constants, we
obtained good agreement with experimental results for all investigated metals.

References

[1] Kirkpatrick S, Gelatt C D Jr and Vecchi M P 1983Science220 671–80
[2] Goldberg D E 1989 Genetic Algorithms in Search, Optimization and Machine Learning(Reading, MA:

Addison-Wesley)
[3] Wong K P and Wong Y W 1994IEEE Proc. Gen. Trans. Distrib.141 507–13
[4] Wong K P and Wong Y W 1993Proc. ANZIIS-93 (Perth, Western Australia)pp 512–16
[5] Rakić A D, Elazar J M and Djurǐsić A B 1995Phys. Rev.E 52 6862–7
[6] Djuri šić A B, Rakíc A D and Elazar J M 1997Phys. Rev.E 55 4797
[7] Djuri šić A B, Elazar J M and Rakíc A D 1997Opt. Commun.134 407–14
[8] Cienawski S E, Ehart J W and Ranjithan S 1995Water Resour. Res.31 399–409
[9] Vemuri R and Vemuri R 1994Elec. Lett.30 1270–2

[10] Curatelli F 1995Int. J. Electron.78 435–47
[11] Goldberg D 1991Complex Syst.E 5 139–67
[12] Gutowski M 1994J. Phys. A: Math. Gen.27 7893–904
[13] Mühlenbein H and Schlierkamp-Voosen D 1993Evolutionary Comput.1 25–41
[14] Mühlenbein M 1995Genetic Algorithms in Engineering and Computer Science(New York: Wiley) pp 59–82
[15] Aluffi-Pentini F, Parisi V and Zirilli F 1985J. Opt. Theor. Appl.47 1–16
[16] Dekkers A and Aarts E 1991Math. Prog.50 367–93
[17] Corana A, Machesi M, Martini C and Ridella S 1987ACM Trans. Math. Soft.13 262–80
[18] Rakíc A D 1995Appl. Opt.34 4755–67

Algorithms for continuous optimization problems 7861

[19] Ashcroft N W and Sturm K 1971Phys. Rev.B 3 1898–910
[20] Ehrenreich H, Philipp H R and Segall B 1963Phys. Rev.132 1918–28
[21] Ehrenreich H and Philipp H R 1962Phys. Rev.128 1622–9
[22] Sturm K and Ashcroft N W 1974Phys. Rev.B 10 1343–9
[23] Marković M I and Rakíc A D 1990Appl. Opt.29 3479–83
[24] Powell C J 1970J. Opt. Soc. Am.60 78–83
[25] Lynch D W and Hunter W R 1985Handbook of Optical Constants of Solidsed E D Palik (Orlando, FL:

Academic) pp 275–367
[26] Weaver J H 1975Phys. Rev.B 11 1416–25
[27] Yu A Y-C, Spicer W E and Hass G 1968Phys. Rev.171 834–5
[28] Seignac A and Robin S 1972Solid State Commun.11 217–19
[29] Hass G and Hunter W R 1974Space Opticsed B J Thompson and R R Shanon (Washington, DC: National

Academy) pp 525–53
[30] Haensel R, Radler K, Sonntag B and Kunz C 1969Solid State Commun.7 1495–7
[31] Foiles C L 1985Landolt-Börnstein, Group III: Crystal and Solid State Physicsvol 15b, ed K H Hellwege

and O Madelung (Berlin: Springer)
[32] Lynch D W and Hunter W R 1991Handbook of Optical Constants of Solids IIed E D Palik (San Diego,

CA: Academic) pp 341–419

